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Abstract

We present a simulation model suited to study efficiency, timing and pulse-height spectra
of Resistive Plate Chambers. After discussing the details of primary ionisation, avalanche
multiplication, signal induction and frontend electronics, we apply the model to timing
RPCs with time resolutions down to 50 ps and trigger RPCs with time resolutions of about
1 ns.
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1 Introduction
A detailed study of signal induction and signal propagation in RPCs can be found in [1]

and [2]. In this report we focus on the detector physics of RPCs, especially the primary ionisa-
tion and avalanche statistics. We present analytical formulae for average signals, charges, time
resolution and efficiency to study the ’order of magnitude’ behaviour of RPCs. We describe a
simple Monte Carlo procedure that enables us to simulate accurately the detector physics pro-
cesses. Effects of high fields, like the change in avalanche statistics and space charge effects, are
also discussed and analysed. Simulation of charge spectra and efficiency of RPCs was reported
in several papers [3][4][5]. In addition to these characteristics, we want to study signal devel-
opment, time resolution as well as frontend electronics and noise effects. As starting values for
the gas properties we use the numbers predicted by Heed [6], Magboltz [7] and Imonte [8].

To illustrate the simulation procedure we will show the results for two different kinds of de-
vices. First we will investigate timing RPCs with a 300µm gap, similar to the ones developed
by P. Fonte et al. [9][10][11] with time resolutions down to 50 ps (Fig. 1). Similar geometries
with 250µm gap are described in [12]. Then we will study 2 mm gap RPCs similar to the ones
in ATLAS [13][14] with a time resolution of≈ 1 ns, used for triggering the experiment (Fig. 2).
Both RPC types operate in saturated avalanche mode with a gas mixture of C2F4H2/i-C4H10/SF6

[15].

The timing RPCs by P. Fonte et al. use gas gaps of 300µm and resistive glass plates with a
volume resistivity of about2 × 1012 Ωcm. The gas is C2F4H2/i-C4H10/SF6 85/5/10 at an oper-
ating voltage of 6(3) kV for the double(single) gap RPCs resulting in an electric field of about
100 kV/cm in the gas gaps. The ATLAS RPCs use 2 mm Bakelite with a volume resistivity of
9 × 109 Ωcm. The 2 mm gas gap is filled with C2F4H2/i-C4H10/SF6 97/2.5/0.5. The working
point is around 10 kV giving an electric field of 50 kV/cm in the gas gap.
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Figure 1: RPC geometries similar to the ones developed by P. Fonte et al. [9][10][11].

1



2mm Bakelite  ε=10

Ground Plane  Signal Strip 

Guard Strip  

2 mm Gas Gap

Figure 2: RPC geometry similar to the one used for ATLAS [14].
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2 Primary Ionisation
The charge deposit is characterised by the average number of clusters per unit of length

and the probability distribution for the number of electrons per cluster. The numbers are cal-
culated using Heed [6]. The average number of clusters/mm versus(γ − 1) of the particle is
shown in Fig. 3a). For the RPC gas we find an average of 7.5 clusters/mm for a minimum ion-
ising particle. The predicted numbers of isobutane and methane are shown as a reference since
measurements for the gases are available [16]. The prediction from Heed matches the experi-
mental results quite well, it should however be mentioned that the experimental numbers vary
significantly in the literature. For a 10 GeV pion we find on average 9.5 clusters/mm, so the
average distance between clusters isλ = 105 µm. The cluster size distribution for two gases is
shown in Fig. 3b. The distance between the clusters is exponentially distributed, so the proba-
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Figure 3: (a) Average number of clusters/mm for different gases predicted by Heed [6]. The
’solid bands’ show measurements for methane and isobutane from [16]. (b) Cluster size distri-
bution for a pion energy of 10 GeV as simulated by Heed. Cutting at 500 electrons the average
number of electrons/cluster is 2.45 for the RPC gas.

bility to find the first cluster between positionx andx + dx is

P (x) =
1

λ
e−

x
λ (1)

The probability for thenth cluster to be between positionx andx + dx, independent of the
position of all the others, is given by

Pclu(n, x) =
∫ x
0

∫ xn−1

0 ...
∫ x2
0 P (x1)P (x2 − x1)...P (x− xn−1)dx1dx2...dxn−1

= xn−1

(n−1)!λn e−
x
λ (Γ distribution)

(2)

with an average distance from the gas gap edge ofx = nλ. For the simulation we simply put the
primary clusters with distances according to Eq. 1 and the number of electrons for each cluster
from the cluster size distribution in Fig. 3b.
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3 Secondary particles
Secondary particles created by the incident particle in the RPC material potentially have

a very big impact on the RPC performance since these particles, mostly delta electrons, create
many ionisation electrons at the ’beginning’ of the gas gap. For the RPCs in Fig. 1a) and b)
the particle enters the gas gap through an aluminium plate. A calculation with Fluka [17] [18]
for a 7 GeV pion crossing a 3 mm aluminium plate shows that the probability that the pion is
accompanied by at least one charge particle is only 4.92%. Therefore the secondaries should
not have a serious influence on the charge spectrum, efficiency and timing.

4 Avalanche Multiplication
Each electron will start an avalanche which will grow until it hits the resistive plate or

metal electrode. Avalanche multiplication for electro-negative gases at high fields is described
in detail in [19]. In case the probability that an electron multiplies is independent of the pre-
vious position of multiplication, the avalanche development is characterised by the Townsend
coefficientα and attachment coefficientη. Fig. 4 shows these parameters as calculated with
Imonte [8]. For the trigger RPCs withE=50 kV/cm we expect an effective Townsend coeffi-
cient of around 10/mm while for the timing RPCs withE=100 kV/cm we expect a value around
100/mm. If the avalanche containsn electrons at positionx the probability that it containsn+1
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Figure 4: Townsend and attachment coefficient as calculated by IMONTE [8].

atx+dx is given bynαdx. Following the same arguments the probability that for an avalanche
of sizen, one electron gets attached (forming a negative ion) over distance dx is nη dx. For the
average number of electronsn and positive ionsp we therefore have the relations

dn

dx
= (α− η)n

dp

dx
= αn (3)
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with n(0) = 1 andp(0) = 0 giving the solution

n(x) = e(α−η)x p(x) =
α

α− η
(e(α−η)x − 1) (4)

The average number of negative ions is thenp − n. To derive the statistical fluctuation of the
avalanche, we proceed as shown in [19]. The probabilityP (n, x) for an avalanche started with
a single electron to containn electrons after distancex is defined by

P (n, x + dx) = P (n− 1, x) (n− 1)αdx (1− (n− 1)ηdx) +

P (n, x) (1− nαdx) (1− nηdx) +

P (n, x) nαdx nηdx +

P (n + 1, x) (1− (n + 1)αdx) (n + 1)ηdx

(5)

The four lines represent the four possibilities to findn electrons at positionx + dx. The first
line gives the probability that there aren − 1 electrons atx, exactly one of them duplicates
and no electron is attached. The second line gives the probability that there aren electrons at
x, no electron duplicates and no electron is attached. The third line gives the probability that
from n electrons, one multiplies and one gets attached and finally the fourth line gives the
probability that fromn+1 electrons one gets attached and no electron is multiplied. Evaluating
the expression and omitting the higher order terms of dx we find

dP (n, x)

dx
= −P (n, x)n(α + η) + P (n− 1, x)(n− 1)α + P (n + 1, x)(n + 1)η (6)

with the general solution

P (n, x) = k
n(x)− 1

n(x)− k
n = 0

= n(x)

(
1− k

n(x)− k

)2 (
n(x)− 1

n(x)− k

)n−1

n > 0

(7)

where
n(x) = e(α−η)x k =

η

α
(8)

The varianceσ2(x) of the distribution is given by

σ2(x) =

(
1 + k

1− k

)
n(x) (n(x)− 1) (9)

We see that the average electron number depends on the so called effective Townsend coefficient
αeff = α−η, the variance and the distribution itself however depend also onk = η/α explicitly.
For illustration, Fig. 5 shows the above distribution for the same effective Townsend coefficient
but differentα andη. For a distancex wheren is sufficiently large, we can approximate the
above formula and find

P (n, x) = k n = 0

= (1−k)2

n(x)
exp

[
−(1− k) n

n(x)

]
n > 0

(10)
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Figure 5: Charge distribution for avalanches starting with a single electron. The effective
Townsend coefficientα− η is the same for both curves.

In the case thatα = η or α = 0 the distribution from Eq. 7 becomes undefined and we have to
use different expressions. In caseα = η the probabilities are

P (n, x) =
αx

1 + αx
n = 0

=
1

(1 + αx)2

(
αx

1 + αx

)n−1

n > 0
(11)

and the variance becomes
σ2(x) = 2αx (12)

In caseα = 0 the probabilities are

P (n, x) = 1− e−ηx n = 0

= e−ηx n = 1
(13)

and the probability to findn > 1 electrons is zero. The variance is

σ2(x) = e−2ηx(eηx − 1) (14)

To generate a random number according to Eq. 7 one draws a uniform random numbers from
the interval(0, 1) and calculates

n = 0 s < k n(x)−1
n(x)−k

= 1 + Trunc


 1

ln

(
1− 1−k

n(x)−k

) ln
(

(n(x)−k)(1−s)
n(x)(1−k)

) s > k n(x)−1
n(x)−k

(15)

where ’Trunc’ means truncation of the decimals. In casen(x) is very large the numerical eval-
uation of the first factor can become problematic and it is better to use the series expansion for
ln(1− x) = −(x + 1

2
x2 + 1

3
x3 + ...).
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To generate a random number according to Eq. 11 one draws a uniform random numbers from
the interval(0, 1) and calculates

n = 0 s < αx
1+αx

= 1 + Trunc
[

1

ln( αx
1+αx)

ln ((1− s)(1 + αx))
]

s > αx
1+αx

(16)

To generate a random number according to Eq. 13 one calculates

n = 0 s > e−ηx

n = 1 s < e−ηx (17)

If we want to calculate the induced signal, we have to simulate the avalanche development
instead of using the probability distribution for the final avalanche charge. Let’s first follow the
avalanche development for a single initial electron starting at one edge of the gas gap. We di-
vide the gap intoN steps of∆x. The average multiplicationn(∆x) for a single electron over
this distance is given bye(α−η)∆x. Starting with one electron atx = 0 we findn1 electrons at
x = ∆x wheren1 is from Eq. 15, 16, 17. Each of these electrons will again multiply the same
way. To find the numbern2 of electrons atx = 2∆x we loop over then1 electrons, draw a
number from Eq. 15, 16, 17 for each electron and sum them. This procedure can be repeated
through the full gap, but it is very time consuming. If the number of electronsni at a given dis-
tance ofi∆x is sufficiently large we can use the central limit theorem and calculate the number
of electronsni+1 at distance(i + 1)∆x by drawing a random number from a Gaussian with
meanµ and sigmaσµ of

µ = nin(∆x) σµ =
√

niσ(∆x) (18)

whereσ(x) is from Eq. 9, 12, 14. This makes the simulation procedure very fast. Fig. 6 shows
examples of individual avalanches starting from a single electron. The very beginning of the
avalanche decides on the final avalanche size. Once the number of electrons has reached a
certain size the avalanche grows smoothly likee(α−η)x.
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Figure 6: Avalanches started by a single electron atx = 0 for α = 13/mm,η = 3.5/mm. We see
that the very beginning of the avalanche decides on the final avalanche size. Once the number
of electrons is sufficiently large the avalanche grows likee(α−η)x.

8



5 Induced Signals
The movement of the electrons in the electric field finally induces a current signal on the

RPC electrodes. The negative and positive ions induce a signal which is much smaller due to
their slow drift velocity which we will neglect in the following. Fig. 7 shows the drift velocities
for different gases as predicted by Magboltz [7]. The current signal induced on an electrode is
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Figure 7: Drift velocity for different gases as predicted by Magboltz [7].

given by [20]

i(t) =
Ew · v

Vw
e0N(t) (19)

wheree0 is the electron charge,Ew (weighting field) is the electric field in the gas gap if we
put the electrode to potentialVw and ground all other electrodes,v is the electron drift velocity
andN(t) is the number of electrons present at timet which we calculate by simulating the
avalanches of the individual primary electrons. The weighting fieldsEw/Vw for the geometries
in Fig. 1 and 2 (considering the electrodes to be large compared to the RPC thickness) are given
by

1a)
Ew

Vw
=

εr

b + dεr
1b)

Ew

Vw
=

εr

b + 2dεr
1c) 2)

Ew

Vw
=

εr

2b + dεr
(20)

whereεr is the Bakelite (glass) permittivity,b the Bakelite (glass) thickness andd the gas gap.
To get an idea about the signals we first assume a single primary electron somewhere in the gas
gap. Using the result that after some initial fluctuationsN(t) grows like a smooth exponential
(Fig. 6) and that the charge after a fixed distance (time) is exponentially distributed (Eq. 10), we
can assume an RPC signal distribution of

i(t) = Ae(α−η)vt P (A) =
1

Aav
e−

A
Aav (21)

whereP (A) is the probability to find the amplitudeA in an event. This signal growth distri-
bution is independent of the position of the primary electron in the gas gap. The position only
determines when the avalanche hits the electrode i.e. it determines when the signal is stopped.
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If the gas gap is large compared to the average distance between clusters, the signal is formed by
many clusters. To get an idea of the average pulse height and signal shape, we assumeN0 = d/λ
clusters distributed evenly in the gas gap, each containingnav electrons (d is the gap thickness
andλ is the average distance between clusters). The signal is then given by

I(t) =
Ew

Vw
e0vN(t) N(t) =

N0∑
n=1

nave
(α−η)vtΘ[

d

v
(1− n

N0
)− t] (22)

whereΘ(x) is the step function. The enveloping function of this signal is

Ienv(t) =
Ew

Vw
e0vNenv(t) Nenv(t) = N0nav(1− tv

d
)e(α−η)vtΘ(d

v
− t) (23)

Both of these functions are shown in Fig. 8. These formulas only match to reality if saturation
effects can be neglected.
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Figure 8: Average signal from Eq. (22) with the enveloping function from Eq. (23) for the
Trigger RPC geometry with parameters from Eq. 25.

To discuss the performance numbers in the next sections we use the parameters from the previ-
ous figures at typical operating voltages:

Timing RPC: E = 100 kV/cm α = 123/mm η = 10.5/mm

v = 215 µm/ns d = 0.3 mm εr = 8

λ = 0.1 mm nav = 2.45 b = 2 mm

(24)

Trigger RPC: E = 50 kV/cm α = 13.3/mm η = 4.2× 0.45/mm

v = 140 µm/ns d = 2 mm εr = 10

λ = 0.1 mm nav = 2.45 b = 2 mm

(25)

whereα is the Townsend coefficient,η the attachment coefficient,d the gas gap,εr the Bakelite
(glass) permittivity,λ the average distance between clusters,nav the average number of elec-
trons per cluster,b the Bakelite (glass) thickness andv the electron drift velocity. The scaling
factor 0.45 for the attachment coefficient for the trigger RPC is applied to match the simulation
with measurements (as shown later).

10



6 Average Signals and Charges
In the following we will derive analytic expressions for the average signal and charge

produced by the individual clusters as well as the total charge deposit. Comparing these formu-
las to measurements will show the importance of saturation effects in RPCs. We will frequently
use the integral

∫ R

0
xne−xdx = n!(1−K[R, n + 1]) with K[R, n] = e−R

n−1∑
k=0

Rk

k!
(26)

6.1 Individual Clusters
UsingPclu from Eq. 2, the average number of electronsN

−
n produced by thenth cluster

is given by
N
−
n =

∫ d
0 Pclu(n, x)navn(d− x)dx

= nave(α−η)d

[1+(α−η)λ]n

(
1−K[d(α− η + 1

λ
), n]

)
≈ nave(α−η)d

[1+(α−η)λ]n
for e(α−η)d >> 1

(27)

The average number of positive ionsN
+
n produced by thenth cluster is

N
+
n =

∫ d
0 Pclu(n, x)navp(d− x)dx

= navα
α−η

[
e(α−η)d

[1+(α−η)λ]n

(
1−K[d(α− η + 1

λ
), n]

)
−
(
1−K[ d

λ
, n]
)]

≈ αnave(α−η)d

(α−η)[1+(α−η)λ]n
for e(α−η)d >> 1

(28)

The average signal from a single electron starting at positionx in the RPC gap is

i(t, x) =
Ew

Vw
e0ve(α−η)vtΘ(d−x

v
− t) (29)

and the corresponding induced charge is

Qind(d− x) =
∫ ∞
0

i(t, x)dt =
Ewe0

Vw(α− η)
(e(α−η)(d−x) − 1) =

Ew

Vw

1

α
p(d− x) (30)

Therefore the average chargeQ
ind
n induced by thenth cluster is

Q
ind
n =

∫ d

0
Pclu(n, x)navQ

ind
n (d− x)dx =

Ewe0

Vw

1

α
N

+
n (31)

and hence the ratio of induced charge and ion charge, which is equal to the total avalanche
charge, measures the Townsend coefficient independent of attachment:

Q
ind
n

Q
avalanche
n

=
Ew

Vw

1

α
(32)

The average signal due to thenth cluster is given by

in(t) =
∫ d
0 Pclu(n, x)navi(t, x)dx

= Ew

Vw
e0vnave

(α−η)t
(
1−K[ 1

λ
(d− vt), n]

)
Θ(d

v
− t)

(33)

The average signals of the first four clusters for the parameters from Eq. 25 are shown in Fig. 9.
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Figure 9: Average signals from the first four clusters for the parameters from Eq. 25.

6.2 All Clusters
In this section we calculate the average total charge and signal. The distance between the

individual clusters is exponentially distributed

P (∆x) =
1

λ
e−

∆x
λ (34)

Therefore the probability to have the first cluster at positionx1, the second one at position
x2 > x1, ..., thenth cluster at positionxn > xn−1 and no other cluster in the gas gap is given by

P (x1)P (x2 − x1)...P (xn − xn−1)(1−
∫ d−xn

0
P (y)dy) =

1

λn
e−

d
λ (35)

The probability to have exactlyn electrons in the gas gap, independent of position, is given by
the integral over all positions

∫ d

0

∫ xn

0

∫ xn−1

0
...
∫ x2

0

1

λn
e−

d
λ dx1dx2....dxn =

1

n!

(
d

λ

)n

e−
d
λ (36)

which is the expected Poisson distribution. The average number of avalanche electronsN
−

n
given by

N
−

=
∑∞

n=1

∫ d
0

∫ xn
0

∫ xn−1

0 ...
∫ x2
0

1
λn e−

d
λ nav (n(d− x1) + n(d− x2) + ... + n(d− xn)) dx1dx2....dxn

=
∑∞

n=1
nav(e(α−η)d−1)dn−1e

− d
λ

(n−1)!(α−η)λn

= nav

λ(α−η)

(
e(α−η)d − 1

)
≈ nave(α−η)d

λ(α−η)
for e(α−η)d >> 1

(37)
The average number of ionsN

+
is derived by replacingn(d − xn) by p(d − xn) in the above

expression and we find

N
+

=
navα

α− η

[
1

λ(α− η)

(
e(α−η)d − 1

)
− d

λ

]
≈ navα

λ(α− η)2
e(α−η)d for e(α−η)d >> 1

(38)
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The average induced chargeQind is as before proportional to the number of ions

Qind =
Ew

Vw

e0

α
N+ ≈ Ew

Vw

nave0

λ(α− η)2
e(α−η)d for e(α−η)d >> 1 (39)

The average RPC Signal is given by

i(t) =
∑∞

n=1

∫ d
0

∫ xn
0

∫ xn−1

0 ...
∫ x2
0

1
λn e−

d
λ (i(t, x1) + i(t, x2) + ... + i(t, xn)) dx1dx2....dxn

=
∑∞

n=1

∫ d
0

∫ xn
0

∫ xn−1

0 ...
∫ x2
0

1
λn e−

d
λ

Ew

Vw
nave0ve(α−η)t

(∑n
k=1 Θ(d−xn

v
− t)

)
dx1dx2....dxn

=
∑∞

n=1
Ew

Vw
nave0ve(α−η)t 1

λ
e−

d
λ (d− vt)Θ(d

v
− t)

(
d
λ

)n−1
1

(n−1)!

= Ew

Vw
nave0ve(α−η)t 1

λ
(d− vt)Θ(d

v
− t)

(40)
We find that the average RPC signal is equal to the enveloping function from Eq. 23.
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7 Intrinsic Timing
In this section we want to find an order of magnitude formula for the intrinsic timing of

a single gap RPC. The timing should not be affected by saturation effects since at the threshold
level space charge effects are not yet important. We assume a single primary electron some-
where in the RPC. The RPC signal and amplitude fluctuation is then given by Eq. 21. Setting a
threshold ofAthr to the RPC signal we find a threshold crossing time of

i(t) = Ae(α−η)vt = Athr → t(A) =
1

(α− η)v
ln

Athr

A
(41)

The amplitudeA is exponentially distributed around some average amplitudeAav. Therefore
the time distributionP (t) for a given threshold is given by

P (t) =
∫ ∞
0

1

Aav
e−

A
Aav δ

(
t− 1

(α− η)v
ln(

Athr

A
)

)
dA (42)

=
(α− η)vAthr

Aav
exp

(
−(α− η)vt

Aav
− Athr

Aav
e−(α−η)vt

)
(43)

whereδ(x) is the Dirac delta function. This distribution has the curious property that a different
threshold merely corresponds to a time shift, i.e. the shape of the distribution is independent of
threshold and average amplitude. Time shifting the maximum to zero, the distribution reads

P (t) = (α− η)vF ((α− η)vt) F (x) = exp (−x− exp(−x)) (44)

The function is shown in Fig. 10. The varianceσ of the functionF (x) is given by

σ(F ) = 1.28 (45)

so the RPC time resolution is given by

σt =
1.28

(α− η)v
(46)

whereα− η is the effective Townsend coefficient andv is the electron drift velocity. We there-
fore expect that the intrinsic time resolution depends only on the drift velocity and the effective
Townsend coefficient and not on the threshold. This is reproduced by the detailed Monte Carlo
simulation (Fig. 10b) and also observed in measurements [10].

For the timing RPC with parameters from Eq. 24σt ≈ 50 ps and for Trigger RPCs with pa-
rameters from Eq. 25 we findσt ≈ 1 ns. These numbers are quite close to the ones quoted in
[24] and [25].
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Figure 10: (a) The functionF (x) from Eq. 44 giving the RPC time resolution. The time resolu-
tion scales with1/(α− η)v which just ’stretches the abscissa’. (b) Full Monte Carlo simulation
of the time resolution versus threshold for the 300µm RPC at 3 kV withtp=0.5 ns and ENC
1 fC. The solid line shows Eq. 46.
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8 Efficiency
In this section we want to estimate the efficiencies that we expect with the detector physics

model and numbers given before. In a simplified view we expect the RPC to be efficient if the
first cluster creates an avalanche that exceeds the threshold or the first cluster is attached and
the second cluster exceeds the threshold or the first and second cluster are attached and the third
exceeds the threshold etc. In addition we assume that the clusters contain only one electron and
we neglect avalanche fluctuations, i.e. a primary electron at positionx in the gas gap will induce
a charge of

Qind(x) =
Ew

Vw

e0

α− η
e(α−η)(d−x) − 1 (47)

on the readout electrode. Setting a threshold ofQt, the condition for an efficient event is
Qind(x) > Qt meaningx < x0 with

x0 = d− 1

α− η
ln
[
1 +

Vw

Ew

α− η

e0
Qt

]
(48)

The probability that the first cluster is not attached and above threshold is

P1 = (1− η

α
)
∫ x0

0

1

λ
e−

x
λ dx (49)

The probability that the first cluster is attached and the second one is not attached and above
threshold is

P2 =
∫ x0

0

∫ x2

0

η

α

1

λ
e−

x1
λ (1− η

α
)
1

λ
e−

x2−x1
λ dx1dx2 (50)

Continuing the series and evaluating the integrals, the probability for thenth cluster to be above
threshold and then− 1 before to be attached is

Pn = (
η

α
)n−1(1− η

α
)(1−K[

x0

λ
, n]) (51)

whereK[x, n] is from Eq. 26. The efficiencyε is then given by

ε =
∞∑

n=1

Pn = 1− e−(1− η
α

) d
λ

[
1 +

Vw

Ew

α− η

e0
Qt

] 1
αλ

(52)

The efficiency depends explicitly onα andη and not just on the effective Townsend coefficient.
For α → ∞ the inefficiency is exp[−d/λ] which is the probability that there is no primary
cluster in the gas gap. This formula together with a full Monte Carlo simulation is shown in
Fig. 11. For the 2 mm RPC the formula underestimates the efficiency since it does not take into
account the possibilities that individual avalanches stay below the threshold but that the sum
crosses the threshold. However, the order of magnitude of the efficiency can be estimated quite
well.

16



a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140 160 180 200

α (1/mm)

E
ffi

ci
en

cy

η=30/mm

η=0

b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16 18 20

α (1/mm)

E
ffi

ci
en

cy

η=0 η=5

Figure 11: Efficiency from Eq. 52 together with the full Monte Carlo for a 0.3 mm RPC (a) and
a 2 mm RPC (b).

17



9 Space Charge Effects
Inserting the detector physics parameters from Eq. 24 and 25 in Eq. 38 and 39 we find

average charges that are significantly larger than the measured ones (measurements in brackets)

Timing RPC: Qtot ≈ 1.7× 107 (5) pC Qind ≈ 1.4× 105 (0.5) pC

Trigger RPC: Qtot ≈ 3300 (40) pC Qind ≈ 100 (2) pC
(53)

The discrepancy for the total charge value is a factor≈ 3.4 × 106 for the timing RPCs and
≈ 102 for the trigger RPCs. Using Eq. 37 we find the average number of avalanche electrons
for the timing RPC to be≈ 1014. Assuming a single electron avalanche in the timing RPC, the
electron cloud will assume a Gaussian shape withσ ≈ 20 µm after 300µm due to longitudinal
and transverse diffusion. Assuming a sphere of charge with106 electrons and radius of20 µm,
the field on the surface is 36 kV/cm, so for numbers of106 − 107 electrons, the fields in the
avalanche become comparable to the applied field. Therefore space charge effects must play
a significant role in this detector. It is shown in [21] that taking into account the field of the
avalanche correctly explains the observed charges.

In this report we are mainly interested in timing and efficiency of RPCs which are not influ-
enced by space charge. At the typical RPC thresholds of 10-100 fC the avalanches are still
small and not affected by space charge. We will take the effect into account in a crude way by
allowing the avalanche growth only up to a certain size as proposed in [4].

10 Avalanche Statistics at High Fields
The assumption that the ionisation probability is independent of the history of previous

collisions will not hold above a certain electric field value. Considering a Townsend coefficient
of α =123 /mm at the electric fieldE = 100 kV/cm, the average distance between ionising
collisions1/α is 8.13µm. Assuming an ionisation energy ofUi = 25 eV an electron has to
travel a distance ofx0 = Ui/E = 2.5 µm after a collision to again reach this energy, so within
2.5µm after each collision the ionisation probability is zero. Since this number is comparable
to 1/α the condition that the ionisation probability is independent of the previous collisions
does not hold any more and the avalanche fluctuations will be altered. Instead the shape of the
distribution depends on the parameter [22]

r =
1

α

E

Ui
(54)

At low fields (r << 1) the avalanches started by a single electron (and multiplying over a fixed
distance) result in the exponential distribution described in the previous chapter. At high fields
(r ≈ 1) the distributions show a pronounced maximum for which many different interpretations
were given [23]. A popular way to describe this phenomenon is the Polya distribution which
derived from the probabilityp to findn + 1 electrons inx + dx as

p = nλ(b− 1−b
n

)dx (55)

We see that this distribution assumes that the probability to create an electron depends on the
current size of the avalanche. This however misses a clear physical interpretation and describes
some kind of space charge effect which we include in the way mentioned above. Therefore the
only justification for this distribution is that it can parametrise the measured curves in a nice way.
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For this study we will as in sect. 4 follow a model by Legler [19] which assumes the physi-
cal picture mentioned above. Ifξ is the distance travelled by an electron from the last ionising
collision the ionisation probability will be given bya(ξ)dx wherea(ξ) is zero forξ < x0 and
will increase forξ > x0. In the same manner the attachment coefficient will depend onξ and we
replace the constant attachment coefficientη by e(ξ). Starting with a single electron atx = 0,
the average number of avalanche electrons at a distancex that had the last ionising collision at
a distance betweenξ andξ + dξ from x is given by [19]

n(x, ξ) = Aeλxe−λξ−
∫ ξ

0
[a(ξ′)+e(ξ′)]dξ′ (56)

with boundary condition

n(x, 0) = 2
∫ ∞
0

a(ξ)n(x, ξ)dξ (57)

The parameterλ is defined by the boundary condition andA is a normalization constant. This
equation is the pendant to Eq. 3. We see that the average number of electrons increases expo-
nentially for any given functiona(ξ) ande(ξ).

The equation determining the statistical fluctuation for this model is difficult to solve and we just
show Monte Carlo results for different parameters. As a simple model we assume the function
a(ξ) to be zero forξ < x0 anda(ξ) = a0 for ξ > x0 and assumee(ξ) = η to be constant. Fig. 12
shows an example for a single electron avalanche spectrum forα = 123 /mm,x0 = 0, 2, 4 µm.
For largex0 values the charge spectrum shows a pronounced peak.

This avalanche statistics effect has however a very small influence on the charge spectrum of
the 0.3 mm and 2 mm RPCs since the position fluctuations of the primary electrons completely
dominate the avalanche fluctuation as shown in the next section.
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Figure 12: Charge distributions for avalanches started by a single electron and multiplying over
a fixed distance of300µm for α = 123 /mm,x0 = 0, 2, 4 µm. 1/α = 8.13 µm. Forx0 values
approaching1/α the the charge spectrum shows a pronounced peak.
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11 Monte Carlo and Comparison with Experiment
Finally we want to compare the simulation procedure and detector physics parameters,

outlined in the previous sections, to experimental results. The simulation procedure for a single
event is the following

– The gas gap of sized is divided intoNstepsteps of size∆x = d/Nstepcorresponding to
time steps of∆t = ∆x/v wherev is the electron drift velocity from Fig. 7 at the given
field.

– Primary clusters are distributed along the gas gap at distances following an exponential
distribution with the mean taken from Fig. 3a.

– Primary electrons are put to each cluster following the cluster size distribution from
Fig. 3b.

– The avalanche for each single electron is simulated using Eq. 15, 16, 17 and the procedure
outlined in section 4 with numbers for Townsend and attachment coefficient from Fig. 4.
This providesN(t), the number of electrons at timet.

– If N(t) exceeds a specified valueNsat the avalanche growth is stopped and theNsat
electrons propagate to the gap end. This procedure simulates the space charge effect.

– The induced current signal is then calculated with Eq. 19 where the electron drift velocity
is from Fig. 7 and the weighting field is from Eq. 20.

– In each simulation step the electrons are propagated by∆x(∆t), the electrons leaving the
gas gap are subtracted fromN(t), so the total signal has a maximum duration ofT ≤ d/v.

We include the electronics by convoluting the RPC signal with the amplifier delta responsef(t)

h(s) =
n−nenn!τ

(1 + sτ)n+1
→ f(t) = L−1[h(s)] = n−nen

(
t

τ

)n

e−
t
τ (58)

wheretp = nτ is the peaking time andn corresponds to the number of amplifier integration
stages. The noise is included by adding Gaussian numbers to the signal in each time bin with a
σ giving the correct Equivalent Noise Charge (ENC) at the output.

11.1 Timing RPCs
Fig. 13a shows a simulated charge spectrum for geometry from Fig. 1c at 3 kV (E=100 kV/cm).

First of all, the shape of the spectrum and the 25% inefficiency match quite well the numbers
reported in [24] and [11]. Overlayed is a simulation taking into account the high field avalanche
statistics effect from the previous section. Although the charge spectrum for an electron multi-
plying over a fixed distance is strongly affected by the value ofx0 (Fig. 12), the RPC spectrum
shows no effect whatsoever, which is due to the fact that the charge fluctuations due to the pri-
mary ionization positions are much larger. The charge spectra for three different voltages for the
quad-gap RPC from Fig. 1b are shown in Fig. 13b. The spectra are equal to the 4 times self con-
voluted charge spectrum from the single gap RPC and resemble quite well the ones presented
in [10]. Fig. 14 shows efficiency and time resolution versus voltage for single and quad gap
RPC. The single gap RPC was simulated for the geometry from Fig. 1c giving a weighting field
of 1.25/mm with 7 GeV pions i.e. 9.4 clusters/mm, 20 fC threshold, 500 ps amplifier peaking
time, 1 fC noise and Townsend coefficient, attachment coefficient and drift velocity for the gas
C2F4H2/i-C4H10/SF6 85/5/10. The overlayed data are from [24].
The simulation for the quad gap RPC was done with the same parameters, except for the weight-
ing field b) with 1.026/mm and an amplifier peaking time of 3 ns. The overlayed data are from
[9]. Fig. 15 shows the charge-time correlation for the quad gap RPC.The agreement between
measurements and simulation is quite acceptable.
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Figure 13: a) Charge spectra for the single gap timing RPC assuming saturation atNsat =
1.6× 107 electrons. The inefficiency is 25 % for a 20 fC threshold. Three histograms forx0 =
0, x0 = 2.5 µm,x0 = 5 µm are overlayed and show essentially no difference. b) Charge spectra
for the quad gap timing RPC assuming Townsend and attachment coefficients from Fig. 4. The
avalanche in each gap is saturated atNsat= 1.6× 107 electrons.
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Figure 14: Results for efficiency and amplitude corrected time resolution for the single gap
(a) and quad gap RPC (b) for the parameters mentioned in the text. The open symbols are
measurements. For the single gap RPC the formulas for time resolution and efficiency from Eq.
46 and 52 are overlayed.
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Figure 15: Charge to time correlation for the quad gap RPC at 5600 V.
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11.2 Trigger RPCs
Fig. 16a shows simulated efficiency and time resolution for the RPC from Fig. 2 together

with measurements from [25]. The efficiency plateau is shifted by about 500 V. Multiplying
the attachment coefficient by 0.45 the simulated and experimental curves match. The simulated
time resolution is better than the 1.1 ns quoted in [25]. Fig. 16b) shows the charge spectra
for the Trigger RPC for different operating voltages withη scaled by 0.45. The spectra are
again unaffected by realisticx0 parameters. The simulated spectra show a sharper cutoff at high
charges than the measured ones which is due to the crude space charge effect approximation.
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Figure 16: (a) Simulated efficiency (black circles) and time resolution (black squares) for trigger
RPCs together with measurements (open symbols) from [25]. The curves are shifted by about
500 V. Scaling the attachment coefficient with 0.45 matches simulation and experiment. The
simulated time resolution (back squares) is significantly better that the measured one. (b) Charge
spectra of the trigger RPC for saturation atNsat= 2.5× 107 electrons, and scaled attachment
coefficient.
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12 Effect of Number of Gaps
In this section we want to investigate the effect of different numbers of gaps on time

resolution and efficiency. The weighting fields for an RPC withn gas gaps of sized separated
by n− 1 glass plates of thicknessb and permittivityε is

Ew

Vw
=

ε

ndε + (n− 1)b
n > 1 (59)

For the single gap RPC (n = 1) we use the geometry from Fig. 1a with corresponding weighting
field from Eq. 20a. Since the weighting field decreases with the number of gaps the total induced
charge is almost independent of the gap number. We assume an applied voltage that gives a
field of 100 kV/cm in the gas gaps i.e. 3 kV for single gap RPC, 6 kV for double gap RPC etc.
Fig. 17 shows the time resolution and efficiency versus gap number. The Figure also shows
the 1/

√
n scaling of the single gap time resolution and1 − (1 − ε)n scaling of the single

gap efficiency. We see that the efficiency follows the simple scaling considerations, the time
resolution improvement however is less than one expects from naive scaling. The reason is that
the timing is dominated by the gap with the largest signal. The largest signal gives the earliest
threshold crossing time, so the timing of the multi gap RPC is approximately given by the
’earliest gap’. The earliest ofn time measurements however has a larger r.m.s. than the average
of n time measurements.
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Figure 17: Efficiency (black squares) and amplitude corrected time resolution (black circles)
versus number of gas gaps. The open symbols give the numbers that are expected from naive
scaling.
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13 Amplifier Bandwidth and Noise
In this section we study the dependence of the RPC time resolution on the amplifier band-

width. We characterise the amplifier by it’s peaking timetp and ordern as given in Eq. 58. We
use the 300µm single gap timing RPC at 3 kV as an example. Fig. 18 shows the time resolution
versus amplifier peaking time. Neglecting the noise, the time resolution is independent of peak-
ing time since using the charge-time correlation one can fully correct for the introduced time
slewing effects. Including the noise however shows that for slow amplifiers the intrinsic time
resolution cannot be recovered. The reason is that the time jitter due to the noise (which cannot
be corrected) inceases for slower signal rise time.
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Figure 18: Simulation of the amplitude corrected time resolution versus amplifier peaking time
for the 300µm single gap RPC with a threshold of 20 fC and Equivalent Noise Charge of
0,1,2 fC. Electronics noise introduces a jitter that can not be recuperated by performing the
amplitude correction. The influence of the noise therefore increases with the amplifier peaking
time. For the 2 fC curve the results for two different noise spectra are shown.
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14 Conclusions
We have presented an RPC simulation procedure including all detector physics and elec-

tronics effects from primary ionisation up to the frontend electronics output. Assuming a very
prominent space charge effect that is modelled by simply stopping the avalanche growth at a
certain number of electrons, we can reproduce the observed RPC performance numbers quite
well without any additional assumptions. We only assume physical parameters as given by Heed
[6], Magboltz [7] and Imonte [8]. The outlined simulation procedure can be implemented in a
Monte Carlo program in a very simple way. Generally we can conclude that

– Neglecting space charge effects, the calculated average avalanche charges for the 300µm
timing RPCs are a factor107 larger than the measured ones. This shows that space charge
effect play a significant role in RPCs [21].

– The RPC efficiency is approximately given by1 − e−(1− η
α

) d
λ

[
1 + Vw

Ew

α−η
e0

Qt

] 1
αλ . It de-

pends explicitly on the attachment coefficient and not just on the effective Townsend
coefficient.

– The RPC time resolution is approximately given byσt = 1.28/(α− η)v and is indepen-
dent of the applied threshold.

– The high efficiency (75%) of single gap RPCs with 300µm gas gap is explained by the
large primary ionisation density (9.4/mm) of the tetrafluorethane gas together with a very
large effective Townsend coefficient of about 115/mm.

– Secondary particles produced in the RPC material should not play an important role in
the RPC behaviour.

– The specific avalanche fluctuation model does not have a very large impact on the RPC
charge spectrum for the RPCs discussed in this report, since in the given operating condi-
tions the charge fluctuations due to primary ionisation position fluctuations are dominat-
ing.

– The time resolution for ann gap RPC does not scale withσt/
√

n whereσt is the single
gap RPC time resolution. The efficiency however does scale with the expected scaling
law of 1− (1− ε)n whereε is the efficiency of the single gap RPC.

– Neglecting electronics noise, the amplifier bandwidth has very little influence on the time
resolution since the time slewing introduced by slow amplifiers can be fully corrected by
the charge-time correlation. Electronics noise however introduces a jitter at the threshold
level which has more effect for slow amplifiers and the intrinsic time resolution can not
be recuperated.

We want to thank Paolo Fonte for many interesting discussions.
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